
19

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

A Cost Greedy Price Adjustment based Job scheduling and Load

Balancing in Grids

K Jairam Naik3
 , Asst Professor, Dept. of CSE, Vasavi College of Engineering, Hyderabad,

India.

Dr A Jagan, , Professor, Dept. of CSE, Padmasri Dr B V Raju Institute of Technology, Hyderabad,

India., jairam.524@gmail.com

Dr N Satyanarayana, Professor, Dept. of CSE, Nagole Institute of Technology & Science,

Hyderabad, India., jagan.amgoth@bvrit.ac.in

__

Abstract - Balanced job scheduling in computational grids should take the motives for both grid

users and resource providers into account. However, in computational grids most of existing

studies on balanced job scheduling only address the motive for one party i.e. either the resource

providers or the users. Motive for both parties are considered by very few studies on balanced

job scheduling in computational grids. The accurate cost of the resource is one of the most

attractive motives for users, which was not addressed. In this paper, we propose a balanced job

scheduling algorithm which can optimizes the motive for both parties in computational grid.

Benefits addressed by the proposed multi-objective optimization approach includes: (i) balanced

scheduling increases successful execution rate of jobs. (ii) Minimizing the combined cost -

motives for grid users. (iii) Reduce the fairness deviation of profits - motive for resource

providers.

We proposed a heuristic based balanced job scheduling algorithm called as A Cost Greedy Price

Adjusted Job scheduling and Load Balancing in Grids (BCGPA) to optimize the motives for

both parties. The proposed approach could offer sufficient motives for both the parties, to stay

and play in the computational grid by balancing jobs among the resources based on deadline and

cost. Simulation result shows that: BCGPA algorithm is effective, Could lead to higher

successful execution rate, smaller combined cost and lower fairness deviation compared with

some popular algorithms in most cases.

Keywords: Computational Grid, Balanced Scheduling, Fairness Deviation, Success Rate,

Candidate resources.

3 Author’s Address: K Jairam Naik , Asst Professor, Dept. of CSE, Vasavi College of Engineering, Hyderabad, India.

Dr A Jagan, , Professor, Dept. of CSE, Padmasri Dr B V Raju Institute of Technology, Hyderabad, India., jairam.524@gmail.com

Dr N Satyanarayana, Professor, Dept. of CSE, Nagole Institute of Technology & Science, Hyderabad, India., jagan.amgoth@bvrit.ac.in

"Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than IJCIR must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers or to redistribute to lists, requires prior specific permission and/or a fee."
© International Journal of Computing and ICT Research 2008.

International Journal of Computing and ICT Research, ISSN 1818-1139 (Print), ISSN 1996-1065 (Online), Vol.10, Issue 1, pp.19-31, June 2016.

mailto:frank.holzwarth@springer.com

20

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

IJCIR Reference Format:

K Jairam Naik, A Jagan and N Satyanarayana. A Cost Greedy Price Adjustment based Job

scheduling and Load Balancing in Grids, Vol. 10, Issue.1pp 19-31. http://www.ijcir.org/volume

10-issue 1/article 3.pdf.

1. Introduction

Recently, grid computing has been moving towards a pay-as-you-go model, in which resource

providers expect an economic compensation for the computational services offered to the users.

From the perspective of grid users, there are two major concerns in job scheduling: Exact cost

incurred and Successful execution rate of jobs (SERoJ) [L. Xiao et al. 2008, H. Izakian et al

2010]. These two concerns are important since, grid users generally hope to successfully

complete their submitted jobs in expected time and cost. On contrary, if jobs frequently miss

their deadlines or the cost incurred is high, users tend to lose interest in the grid system and may

finally leave the system. Therefore, increasing SERoJ is a motive for grid users, and so is

reducing cost [I. Foster et al 2002, S.K. Garg et al 2011], which shall be considered in job

scheduling.

On the other hand, from the perspective of grid resource providers, a major concern in job

scheduling is profit fairness. Generally the providers hope to have equal opportunities to offer

their resources and gain fair profits according to their properties. Therefore, increasing profit

fairness, or equivalently reducing the fairness deviation of profits, is desirable from the

perspective of resource providers [C. Xu et al 1997].

Balanced job scheduling in computational grids should consider the incentives for both grid

users and resource providers. However most of the existing studies of balanced job scheduling in

computing grid only address the motive for one party i.e. either the resource providers or the

users. The accurate cost of the resource is one of the most attractive motives for users, which was

not addressed. In this chapter, we propose a multi-objective Heuristic algorithm (BCGPA) for

job scheduling in computational grid which addresses the major motives for both i.e.

1. Maximizing the SERoJ and minimizing the combined cost (motives for grid users),

2. Minimizing the FDoP (motive for resource providers).

The rest of this paper is organized as follows. Section 2 gives a review of related work on job

scheduling in grid environment. Section 3 presents the system model we used. We put forward

the optimization objectives for users and resource providers and propose a heuristic scheduling

algorithm called BCGPA algorithm in Section 4. Simulations, results and analyses are given in

Section 5 and concluded this paper in Section 6.

2. Related work

Many literatures have studied the job scheduling problem in grid environment. In general,

21

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

existing grid scheduling algorithms can be classified into two types based on scheduling time, i.e.

Immediate mode scheduling and b) Batch mode scheduling [F. Xhafa et al. 2010] In immediate

mode, a job is scheduled as soon as it arrives at the scheduler. While in batch mode, jobs are

collected into a group and mapped to resources at the End of a fixed scheduling interval. The

immediate mode is suitable for the situation of low arrival rate, while batch scheduling can take

better advantage of job and resource information [M. Maheswaran et al. 1999]. Batch mode

scheduling is commonly adopted in literatures which investigate job scheduling problem in grid

environment [S. K Garg et al. 2010, S. K Garg et al. 2011 & J. Yu et al 2005].

In [K.Z. Gkoutioudi et al 2012] classified the existing heuristic based task allocation methods

into several groups, such as economic heuristic, population-based heuristic, and so on. The

algorithms that mainly focus on minimizing makespan, which is the finishing time of the latest

job, without considering the budget requirement of users. In [Heyang Xu et al 2015], the authors

formulate a nonlinear programming model to maximize the aggregate utilities of all grid users

and propose an optimization based resource pricing algorithm. The grid user utility is defined as

a function of resource units allocated to the grid user. In [Heyang Xu et al 2015], CGPA sets

high priority to the jobs with few candidate resources and maps a job to the candidate with

lowest cost. It adopts price-adjusting algorithm to adjust the price of candidate resources to avoid

the fairness deviation becoming worse. But was not more efficient to improve SERoJ and the

tendency to fail the user job is more.

In [S. K garg et al. 2011], the authors study how to decrease the aggregate cost of all jobs under

some QoS requirements. They propose a constrained linear programming model and a linear

programming genetic algorithm (LPGA) to minimize the combined spending of all users.

Although all these approaches improve the performance, they ignore the motives for resource

providers, for example, the FDoP which is considered in this paper. Huang et al. [J. Yu et al

2005] propose a series of motive-based algorithms to maximize the successful execution rate of

jobs and to minimize fairness deviation among resource providers. Also, their research is based

on immediate mode scheduling which is different from our work. They extend the study [L. Xiao

et al. 2008], by further taking resource utilization rate and load balancing level into

consideration. We tried to optimize an important motive, combined cost, which is most attractive

to grid users however, all the above studies ignore considering job execution cost. If the cost of

executing jobs is too high, grid users will lose interest in the grid system.

3. System model

Grid users are the active entities in computational grid among resource providers and grid

scheduler. Grid users submit jobs to the grid scheduler with certain QoS requirements. Resource

providers can offer their resources to execute jobs submitted by grid users via the scheduler. The

grid scheduler is responsible for mapping the jobs submitted by grid users to the provider’s

resources. Grid users and resource providers interact through the grid scheduler. Here, some

important QoS factors which users most concern about are budget, deadline, and the number of

required successive CPU’s [H. Izakian et al 2010, S. K Garg et al. 2011]. Each job consists of

several tasks and each task requires one processor. Tasks of the same job should be executed

concurrently on the same resource [S. K Garg et al. 2010]. The grid scheduler collects jobs

submitted by grid users, gathers resource information (such as available CPUs, successive rate of

the CPU, the price of using one CPU per unit time and computational speed of its CPUs) from

22

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

resource providers and sends each job to a resource to be solved in a batch mode at the end of the

scheduling interval. Then, resource providers execute jobs and charge for executing them.

Generally, the scenario of job scheduling is as follows: each user in the computational grid may

submit one or more jobs, each job can be composed of several tasks; the grid scheduler is

responsible for mapping each job to a resource to be solved.

4. Problem formation

Suppose that the computational grid consists of m (m ≥ 1) resources; R = (R0, R1. . . Rm−1). Let Rj

(aj, pj, sj,, ej) represents the resource information that meta-scheduler gathers from resource

provider j (j Є {0, 1, . . . , m − 1}), where aj is the number of available CPUs of resource Rj, pj is

price (equals to the cost of using a single CPU per second) of a CPU, sj is the CPU speed, in

million instructions per second (MIPS) and ej is the resource success rate. Jobs that meta-

scheduler collects during the scheduling interval T, is denote by J = (J0, J1, . . . , Jn-1) where (n ≥

1). Ji (ti, bi, di, li, Lik) represents information of the job i (i Є {0, 1,. . . , n − 1}). Where, ti is the

submitted time of job Ji (0 ≤ ti ≤ T) and bi is the budget constraint, which means that the cost of

executing job Ji must not exceed bi, di represents the deadline by which the user desires the job

to be completed. The number of tasks that job Ji contains is li (li ≥ 1) and Lik is the length of task

k (k Є {0, 1, . . . , li − 1}) in job Ji in terms of millions of instructions (MI).

4.1. Objectives for providers and users

A fundamental optimization objective for resource providers is the fairness of obtained profits. It

means that a resource provider could obtain the same share of profit as the capacity that it invests

to the system. In computational grid, each resource provider should have equal opportunity to

offer its resource and gain a fair profit according to its capacity. Fairness of obtained profits is

attractive to both providers with low capacity and those with high capacity. Therefore, we take

minimizing FDoP (denoted by σ, shown in Eq. (3)) as the objective for resource providers, which

is adopted in [L. Xiao et al. 2008] as well.

Let we first state several relevant definitions prior to describing Eq. (3). Each resource Rj bills for

the jobs which are successfully executed by them. We use profitj to denotes the obtained profit of

resource provider j, which is given by

𝑃𝑟𝑜𝑓𝑖𝑡𝑗 = ∑ 𝑥𝑖𝑗
𝑛−1
𝑖=0 ∗ (∑ (

𝐿𝑖𝑘

𝑆𝑗
∗ 𝑝𝑖(1 + 𝑒𝑗))

𝑙𝑖−1
𝑘=0) (1)

Where, xij = 1, when job Ji is allocated to resource Rj; otherwise, xij = 0.

and 𝑒𝑖 =
𝑁𝑠

𝑁𝑠+𝑁𝑓

Where,

Ns and Nf represents the number of jobs successes, fails the execution respectively in given

deadline by the resource.

The obtained fairness of profit of resource provider j is denoted by µj, which is defined as the

profit obtained of resource provider j divided by its total available CPU capacity, as given in Eq.

23

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

(2)

 µ𝑗 =
𝑃𝑟𝑖𝑓𝑖𝑡𝑗

𝑎𝑗∗𝑠𝑗
∗ (1 + 𝑒𝑗) (2)

The FDoP for all resource providers is the standard deviation of their fairness of obtaining profit.

Therefore, the optimization objective of resource providers is given by Eq. (3). Min σ = std-dev

(µ0, µ1, . . . , µm−1)

 = √
1

𝑚
∑ (µ̅ − µj)

2
,𝑚−1

𝑗=0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (3)

Many objectives could be defined for grid users, but what attracts them most is that their jobs

could be successfully executed at low cost and in deadline. If the cost of executing jobs is too

high or jobs frequently miss their deadlines, users will lose interest in the grid system.

Consequently, we endeavor to minimize the combined cost C (shown in Eq. (4)), which is the

sum of cost of all users, and maximize the SERoJ (denoted by θ, shown in Eq. (5)) under the

constraints of budget and deadline.

𝑀𝑖𝑛 𝐶 = ∑ ∑ 𝑚−1
𝑗=0 𝑥𝑖𝑗

𝑛−1
𝑖=0 ∗ (∑ (

𝐿𝑖

𝑆𝑗∗(1+𝑓𝑗)
∗ 𝑝𝑖)

𝑙𝑖−1
𝑘=0) (4)

𝑀𝑎𝑥 𝛳 =
∑ 𝛹𝑖

𝑛−1
𝑖=0

𝑛
 (5)

Subject to

(i) xij Є{0, 1}, i Є {0, 1, . . . , n-1}, j Є {0, 1, . . . , m-1}.

(ii) ∑ xij
m
j=1  1, i Є {0, 1, . . . , n-1}.

(iii) ∑ xij
m
j=1 . li  aj, j Є {0, 1, . . . , m − 1}.

(iv) i Є {0,1,...,n-1}, if xij = 1, then (T-ti) +Max0 k li−1 {
Lik

Sj∗(1+ej)
)} di.

(v) i Є {0,1,...,n-1},if xij =1,then ∑ (
Lik

Sj
∗ pj  bi)

li−1
k=0 .

(vi) i Є {0,1,...,n-1},for xij =1, ei = Ns / (Ns + Nf) ei = Ns / (Ns + Nf) ; If job i is completed

before its deadline, then Ns = Ns +1; otherwise Ns value remains unchanged.

If job i is completed before its deadline, then 𝛹𝑖= 1; otherwise, 𝛹𝑖= 0. The first constraint defines

the feasible range of variable xij. The (ii) Constraint ensures that a job should be assigned to no

more than one resource. Constraint (iii) specifies that the total allocated CPUs on a resource

should not exceed its available number. Actually, this constraint is a set of m constraints because

for each resource there is a constraint of total allocated CPUs on it. In constraint (iv), (T − ti)

means the waiting time of Ji; Lik is the length of the kth task of Ji;
𝐿𝑖𝑘

𝑆𝑗∗(1+ 𝑒𝑗)
 is the execution time

of the kth task of Ji; 𝑀𝑎𝑥0 𝑘 𝑙𝑖−1 {
𝐿𝑖𝑘

𝑆𝑗∗(1+ 𝑒𝑗)
} is execution time of Ji, Which equals to the

maximum execution time among all its tasks. Therefore (iv) constraint means that, if Ji is

mapped to resource Rj, then the sum of its waiting time and execution time must be less than its

24

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

deadline. Constraint (v) indicates that, if Ji is mapped to the resource Rj, then the cost of

executing the job must be less than its budget. Constraint (vi) indicates, if greater the Nf value,

increases the cost. Resource with higher cost has more chances to miss the deadline. Such

resources are preferred less by the user and recommends price balancing.

In this paper, we deal with the job scheduling in computational grids as a multi-objective

optimization problem, i.e., minimizing the FDoP (Eq. (3)), minimizing the combined cost (Eq.

(4)) and maximizing the SERoJ (Eq.(5)). It can be noted that, when substituting Eq.(1)and (2)

into Eq.(3), the first optimization objective, Eq. (3), are not linear concerning xij. Therefore, the

proposed optimization problem is a nonlinear one. Moreover, from the first two constraints we

can see that this problem is a combinatorial optimization problem, which has been proved to be

an NP-hard problem. Due to the NP-hardness of the grid job scheduling, the approximation

algorithms that suffice to find a near optimal solution are more promising. Therefore, we propose

a heuristic algorithm which is presented in the next section.

4.2. Proposed BCGPA algorithm

Lots of algorithms have been developed for scheduling jobs in a computational grid. The

majority of them aim to minimize the job completion time [S.K. Garg et al 2010], optimize load

balance [Y. Lee, S et al 2011], or improve resource utilization [H. Izakian et al 2010]. Heuristic

algorithms have shown to be useful approaches for solving varieties of hard-to-solve

combinatorial and multi-objective optimization problems. Therefore, in this paper, we propose a

heuristic algorithm named as balanced cost-greedy price-adjusting (BCGPA) algorithm, as

shown in Algorithm 1.

Definition 1. Candidate Resource: For job Ji, if a resource Rj can complete Ji before its deadline

and the cost is less than its budget, then Rj is a candidate resource of Ji. If there is more than one

candidate resource for a job, the resource with the lowest cost will be selected to handle the job.

Algorithm 6.1: Balanced Cost-greedy Price-adjusting (BCGPA) algorithm

Input: set of jobs (submission time, budget, deadline constraints, number of tasks,

length of each task) and set of resources (num of available CPUs, CPU capacity,

price of CPU, Resource success Rate).

Output: Mapping of jobs to resources.

1 while(there is unmapped job)

2 foreach unmapped job Ji do

3 foreach resource Rj do

4 if Rj can satisfy constraints of Ji then

5 add Rj to candidate resource set Si of job Ji ;

6 end if

7 end foreach

8 if Si = Ω then

9 add job Ji to unsuccessful mapping set U;

10 change Ji ’s state to failed allocation;

25

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

BCGPA

algorith

m is an

iterative

greedy

approac

h in

which,

initially

all jobs

are set

in

unmapp

ed state.

Then,

BCGPA

executes the following process(lines 2–24, Algorithm 1) iteratively: First, for each unmapped

job Ji, BCGPA orderly checks m resources R0, R1, . . . , Rm−1 whose subscripts are randomly

generated to find the candidate resources of Ji and these candidate resources compose Ji’s

candidate resource set Si (lines 3-7, Algo. 1). In this process, if certain Si is an empty set, then job

Ji cannot be successfully mapped and the state of Ji is changed to failed allocation (lines 8–10,

Algorithm 1); if certain Si contains only one resource Rj, then BCGPA maps job Ji to resource Rj

and the state of Ji is changed to successful allocation (lines 11–16, Algo 1).

Second, jobs for whose candidate resource set contains more than one candidate resource,

BCGPA selects the job Ji whose candidate resource set contains minimal number of candidate

resources and maps Ji to the candidate resource Rj in Si which can minimize Ji’s cost (lines 19–

23, Algorithm 1). Then, BCGPA invokes the function of AdjustResourcePrice (Si), shown in

Algorithm 2, to adjust the price of candidate resources in Si (line 24, Algorithm 1). Continue the

steps mentioned above until there is no job in unmapped state.

11 else if |Si | = 1 then

12 map job Ji to the candidate resource in Si ;

13 change the number of available CPUs of resource Rj ;

14 change j's state to successful allocation

15 end if

16 end if

17 end foreach find the candidate resource set Si (|Si| > 1)

 which contains minimal elements;

18 find the resource Rj (from Si) which minimizes the cost of Ji;

19 map job Ji to resource Rj ;

20 change the number of available CPUs of resource Rj ;

21 change Ji ’s state to successful allocation;

22 AdjustResourcePrice (Si);

23 end while

Algorithm 2: AdjustResourcePrice (Si)

Input: candidate resource set Si ; α, β which are coefficients of increasing and

decreasing price, respectively.

26

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

As shown in Algorithm 2, for each resource Rj in Si, if Rj is selected to execute job Ji, then the

price of Rj will increase by α, which is a decimal slightly greater than 1, to avoid Rj always being

selected in the following choice (lines 2–3, Algorithm 2). Otherwise, the price of Rj will decrease

by β, which is a decimal slightly less than 1, to avoid Rj never being selected in the following

choice (lines 4–5, Algorithm 2).

5. Simulation configurations

5.1 Simulation configurations

Assume all the users, providers and jobs are independent with characteristics shown in Table 6.1

and Table 6.2.

The initial price of all resources varies between 4G$ and 5G$ with average value of 4.5 G$. The

budget allocated to each job set Ji is according to Eq. (6), it is the value of multiplying the

number of jobs Ji by 500 and varied by 20%. The value 50 is obtained by multiplying the

average estimated execution time (10 s) of a task by the maximal resource price (5 G$). The X is

an integer variable which is uniformly distributed within the range [0, 100]. Y is an integer

variable with the value of 1 or 0. Deadline requirement allocated to each job Ji is set the sum of

estimated average run time and interval with 10% variation.

bi = 50.li + X . pow (-1, y). (6)

In experiment 1, we investigate the impact of two parameters, α and β, which are used in our

method. In experiment 2, we compare the proposed algorithm with other four representative

algorithms to investigate the efficiency of the proposed algorithm. In experiment 3, we

investigate the efficiency of the proposed algorithm under real workload traces.

5.2.

Experime

Output: calculated new price.

1 foreach resource Rj in Si do

2 if Rj is the selected resource then

3 Rj .price = α × Rj .price;

4 Else
5 Rj .price = β × Rj .price;

6 end if
7 end foreach

Table 6.1: Grid resource characteristics

Number of

Resources
1 - 4

Number of

Machines
1 - 25

 Number of PEs 100

 PE ratings 10 or 50 MIPS

 Bandwidth 1000 - 5000 B/S

Table 6.2: Scheduling parameters and

their values

No. of providers 1 - 4

No. of users 200 –1500

No. of user job 200 - 500

 Job length 0 – 50,000 MI

Resource price 4G$ - 5G$

I/O file size

100+(10–40%)

MB

27

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

nt 1

This experiment investigates the impact of α and β on scheduling performance of our method. α

and β are used in price adjusting algorithm, as shown in Algorithm 2, and they are price

increasing and decreasing coefficients, respectively. We design price adjusting algorithm to

improve the fairness deviation of all resource providers. In a real market, the price of certain

commodity does not fluctuate largely after a deal. So, an important principle in our price

adjusting algorithm is that a big change of price is inadvisable. Therefore, the pair of α and β,

which change resource’s price not so much, is what we want. We use average price of all

resources as the metric to determine a suitable pair of values of α and β. Experiment shows the

results obtained based on different pair of α and β after scheduling 100 jobs. When α = β = 1, the

price of all resources has no change though the scheduling interval and the average resource is

4.47. From Experiment, it can be seen that the average price of all resources rapidly drops with β

slightly decreasing. When α = 1.15 and β = 0.995, the average price is 4.19, which is the closest

to 4.47 out of the results under four pairs of α and β. Thus, in experiment 2, α and β are set to

1.15 and 0.995, respectively.

5.3. Experiment 2

We compare the efficiency of Balanced cost-greedy price-adjusting (BCGPA) algorithm with

other four algorithms adopted in related researches to investigate it i.e., min-min cost time trade-

off (MinCTT) algorithm], modified min cost (MMC) algorithm, linear programming based

genetic algorithm (LPGA) and CGPA, with varied system load ranging from 0.41 to 0.99. The

system load is calculated by Eq. (7).

𝑆𝑦𝑠𝑡𝑒𝑚𝑙𝑜𝑎𝑑
=

∑ ∑ 𝐿𝑖𝑘
𝑙𝑖−1

𝑘=0
𝑛−1
𝑖=0

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙∗∑ 𝑎𝑗∗𝑠𝑗∗(1+ 𝑒𝑗)𝑚−1
𝑗=0

 (7)

Submission time and then dispatches each job to a candidate resource. If a resource can satisfy a

job’s QoS requirements, the resource is a candidate resource for the job. If a job has no candidate

resource, the job fails to be scheduled and if there are many candidate resources, the one with the

lowest cost will be selected. MinCTT algorithm maps each job to the resource with minimizing

the cost metric, which is defined as the trade-off between response time and execution cost.

MMC algorithm handles the jobs in two ways: for jobs with one candidate resource, their

mapping is frozen and the jobs with more than one candidate resource will be mapped to the

most economical resource. LPGA use genetic algorithm to generate a solution near to optimal

solution, by seeding the approximate solutions from MMC. In the following parts, we compare

these algorithms with our approach on three considered factors: SERoJ, combined cost and

FDoP.

5.3.1. Successful execution rate of jobs (SERoJ)

A successful job execution means that a job is completed before its deadline. With higher

successful execution rate, the grids provide more interest the users have in performing their jobs.

The SERoJ is calculated according to Eq. (5). As shown in experiment and Fig. 1, the SERoJ

obtained by all algorithms decreases with the increase of system load. LPGA has the highest

successful execution rate, and the result of our proposed algorithm, BCGPA, is very close to that

28

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

of LPGA and outperforms the other three methods. That is because BCGPA preferably maps the

job with tight QoS constraints (lines 11–21, Algorithm 1). Thus, all jobs will be more likely to be

mapped to a resource to be completed before its deadline.

Fig. 1. Successful execution rate of jobs with Fig. 2. Fairness deviation obtained by

different varied

system loads. Algorithms with varied load.

 5.3.2. Combined cost

According to Eq. (4) Combined cost is calculated, which is the total cost of all successfully

mapped jobs. The comparison results of the proposed BCGPA algorithm with other four

algorithms are shown. BCGPA algorithm obtains lower combined cost than that obtained by

other algorithms in all varied system load situations because BCGPA tries to map a job to the

candidate resource with the lowest cost (lines 20–21, Algorithm 1). Although FCFS can obtain

relatively low combined cost, its job failure rate is higher than other methods. We use cost saving

ratio (CSR) to elaborate how much combined cost that users can save by using the proposed

BCGPA algorithm. The cost saving ratio is defined as the difference of combined cost between

selected algorithm and the proposed BCGPA algorithm divided by the combined cost obtained

by BCGPA algorithm.

For example, the cost saving ratio of MMC algorithm is calculated by Eq. (8). A positive value

of certain CSR indicates that BCGPA algorithm obtains lower combined cost than the

corresponding algorithm; otherwise, BCGPA algorithm brings higher combined cost than the

corresponding algorithm. For example, when system load is 0.45, the value CSR MMC is about

13%, which means that the proposed BCGPA algorithm can save combined cost by 13%

compared with that obtained by MMC algorithm. From Fig. 2, it can be seen that the cost saving

ratio obtained by the other four algorithms is bigger than zero in most cases except the MinCTT

algorithm with system load 0.95. That is because when system load is 0.95, many jobs fail to be

mapped to a resource and these jobs produce no execution cost in MinCTT algorithm.

𝐶𝑆𝑅𝐶𝐺𝑃𝐴 =
combined cost obtained by CGPA − combined cost obtained by BCGPA

combined cost obtained by BGPA
 (8)

5.3.3. Fairness deviation of profits

0

20

40

60

80

100

500 1000 1500 2000

Su
cc

e
ss

fu
l E

xe
cu

ti
o

n

R
at

e
 %

Load

BCGPA

CGPA

LPGA

MMC

MinCTT
-5

0

5

10

15

20

0.45 0.55 0.65 0.75 0.85 0.95

Fa
ir

n
e

ss
 o

f
P

ro
fi

t

Load %

MinCTT

MMC

LPGA

CGPA

BCGPA

29

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

The fairness of grid can be expressed in the way that all resource providers have equal

opportunities to offer their resources and can obtain fair profits according to their resource

capacities [L. Xiao et al. 2008]. FDoP (defined by Eq. (3)) indicates the dispersion of all resource

providers’ profits. The smaller the value of fairness deviation is, the fairer the providers’ profits

are. Fig. 3 show the results obtained by different algorithms under different system loads. It can

be seen that our approach obtains lower fairness deviation than that of other four methods. The

reason is that to adjust the price of all candidate resources for each job mapping the proposed

CGPA algorithm uses price adjusting algorithm. If a candidate resource obtains a job, then the

CGPA algorithm slightly increases its price to prevent it from always being selected in following

mapping (lines 2–3, Algorithm 2); otherwise, the CGPA algorithm slightly decreases its price to

avoid never being selected in following mapping (lines 4–5, Algorithm 2).

Thus, the proposed CGPA algorithm can get better fairness deviation. Also, from Fig. 3, we can

find that the fairness deviation obtained by all approaches declines with the increasing of system

load. The reason lies in that, with the increasing number of jobs, more and more resources get

jobs near to their processing capacities, which leads to the decrease of fairness deviation.

Fig. 2. Cost saving rate obtained by the four algorithms.

Fig. 4. Fairness deviation of Load.

87

89

91

93

95

97

99

0.45 0.55 0.65 0.75 0.85 0.95

C
o

st
 S

av
in

g
%

Load %

MinCTT

MMC

LPGA

CGPA

BCGPA

-1

1

3

5

7

9

11

13

15

500 1000 1500 2000

D
e

vi
at

io
n

 o
f

Lo
ad

Jobs Submitted

BCGPA

CGPA

LPGA

MMC

MinCTT

30

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

6. Conclusion

The two important entities in computational grid are Grid users and resource providers and they

have different objectives of interest and make autonomous scheduling decisions. This makes the

problem of job scheduling more complex than ever before in commodity market-like grid.

In this paper, job scheduling is formulated in computational grid as a multi-objective

optimization problem. It is called as a well-known NP-hard problem due to its combination

property. So a heuristic, balanced cost-greedy price-adjusting (BCGPA) algorithm is proposed.

In each mapping, BCGPA algorithm sets high priority to the jobs with few candidate resources

and maps a job to the candidate with the lowest cost and then adopts a price-adjusting algorithm

to adjust the price of candidate resources to avoid the fairness deviation be-coming worse. The

simulation results clearly illustrate that our approach is efficient and could lead to a higher

successful execution rate, lower combined cost and better fairness of providers’ profits than other

compared algorithms in most cases.

References

C. Xu, F.C. Lau, Load Balancing in Parallel Computers: Theory and Practice, Kluwer, Boston,

MA, 1997.

F. Xhafa, Computational models and heuristic methods for grid scheduling problems, FGCS. 26

(4) (2010) 608–621.

Heyang Xu, Bo Yang, An incentive-based heuristic job scheduling algorithm for utility grids,

Future Generation Computer Systems 49 (2015) 1–7.

H. Izakian, An auction method for resource allocation in computational grids, FGCS. 26 (2)

(2010) 228–235.

I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, Grid services for distributed sys. integration,

Computer 35 (6) (2002) 37–46.

J. Yu, R. Buyya, C.K. Tham, Cost-based scheduling of scientific workflow applications on utility

grids, in: Proceedings of the First Int Conf on e-Science and Grid Computing, 2005, pp. 140–

147.

K.Z. Gkoutioudi, H.D. Karatza, Multi-criteria job scheduling in grid using an accelerated genetic

algorithm, J. Grid Comput. 10 (2012) 311–323.

L. Xiao, incentive-based scheduling for market-like computational grids, IEEE Trans. PDS. 19

(7) (2008) 903–913.

M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic mapping of a class of

independent tasks onto heterogeneous computing systems, J. PDC. 59 (2) (1999) 107–131.

31

International Journal of Computing and ICT Research, Vol. 10, Issue 1, June 2016

S.K. Garg, P. Konugurthi, R. Buyya, A linear prog-driven genetic algo. for meta-scheduling on

utility grids, Int. J. PEDS. 26 (6) (2011) 493–517.

S.K. Garg, R. Buyya, H.J. Siegel, Time and cost trade-off management for scheduling parallel

app. on utility grids, FGCS. 26 (8) (2010) 1344–1355.

Y. Lee, S. Leu, R. Chang, Improving job scheduling algorithms in a grid environment, Future

Gener. Comput. Syst. 27 (8) (2011) 991–998.

