Modelling the Adoption of Mobile Payment System for Paying Examination Fees in Tanzanian Major Cities

Titus Tossy*
tossytm@gmail.com
Polytechnic of Namibia

Abstract

This paper examines the different factors affecting the intention to use the mobile payment systems for examination fee payment in the National Examination Council of Tanzania (NECTA). Using Structural Equation modelling technique from a Tanzanian major cities perspective, the paper examines whether the mobile payment systems technology acceptance level is affected by the factors affecting the intention to use. The rationale for the investigation stems from the fact that while more than 61% of Tanzanians own or have access to mobile phones and the mobile usage in major cities increases, there is decrease of NECTA candidates who opt mobile examination fee payment method. The paper attempts to model the individual intention to use mobile payment systems for paying examination fees in Tanzania major cities. It concludes that the factors that had significant impact on the individual intention to use mobile payment systems, performance expectancy, social influences and trust is necessary.

Categories and Subject Descriptors: K.3.1. [Computer Uses in Education]

General Terms: Collaborative Learning, Distance Learning

Keywords: Mobile Payment System, Technology Acceptance Model, Structural Equation Modelling, Information Systems, Tanzania major cities.

IJCIR Reference Format:

* Author’s Address: Dr. Titus Tossy, Polytechnic of Namibia, Department of Informatics, tossytm@gmail.com. "Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than IJCIR must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.” © International Journal of Computing and ICT Research 2014.
1 Introduction

Mobile payments, also known as m-payments, may be defined as any payment where a mobile device is used to initiate, authorize and confirm an exchange of currency in return for goods and services (Tobbin and Kuwornu 2011, Shin 2010). Mobile devices include mobile phones, PDAs, wireless tablets and other devices that can connect to mobile telecommunication networks. Mobile payments can be an alternative to cash, checks, credit cards and debit cards, and can make possible new opportunities for commerce convenience (Shin 2010).

As Penicaud (2013) states that there are more mobile money accounts than bank accounts, mobile payment systems are receiving increasing attention in Tanzanian major cities. It has become an important alternative payment method as compared to traditional cash based transaction. Among the services available to the users of mobile money include money transfers between individuals, mobile payments (for airtime, bill payments and salary transfer), and mobile banking. Mobile banking includes services like bank account balance inquiry, deposit money from mobile account to bank account and withdraw from bank account to mobile account. It is reported that, the top three used services are mobile airtime top-up, money transfer between individuals and electricity bill payments (Ericsson ConsumerLab 2012, InterMedia 2013).

Tanzania has a potential to expand the adoption of mobile money services given the rate of access to mobile phones. More than 61% of Tanzanians own or have access to mobile phones (TCRA 2013, InterMedia 2013). The trend of mobile phone subscribers show that, in the year 2005 there were 2,963,737 which later raised to 27,450,789 in the year 2012 (TCRA 2013). At least 35% of households in Tanzania have at least one mobile money user (InterMedia 2013). The rate of mobile money usage in urban areas and banked households is highest (InterMedia, 2013). This increase is improved due to a wider range of services and goods that can be paid by mobile money are offered (Alexandre et al. 2012).

However, according to National Examination Council of Tanzania (NECTA) database, in year 2012, there were 2,976 candidates who opted mobile payment method, out of 92,007 registered candidates (NECTA 2012). The number of mobile payment users increased to 3,298 in 2013 out of 82,747 registered candidates (NECTA 2013). There was an increase of mobile payment users from 2,976 to 3,298 candidates only. This indicates that, the rate of adoption of mobile payment system is not adequate. The NECTA database further reveals that, mobile payment adopters for applicants in major cities have decreased from 1,353 in 2012 to 371 in 2013 despite the overall increase of users (NECTA 2012, 2013). Major cities residents are known for their high rate of adopting new technologies as compared to their counterpart rural and small townships. However, this has not been the case in adoption of mobile payment system in Tanzania major cities.

Seems there is little or no previous research on the adoption of mobile payment and in particular examination fee payment in Tanzania. The well known models and theories for technology acceptance have yielded inconsistent results as to their core determinants of technology adoption (Omwasa 2012 p. 4). Therefore, in order to promote adoption and usage of mobile payment, it is important and necessary to model the behavioural intention to use mobile payment in Tanzanian culture.

This study aims to identify, understand and model factors that affect the behavioural intention to use mobile payment system in Tanzanian major cities. With focus on assessing the adoption of mobile payment system for paying examination fees, the paper intents to answer the following questions:

- What are the key factors affecting the behavioural intention to use Mobile Payment Systems for paying national examination fees in Tanzania Major cities?
- How factors affecting adoption of mobile payment for paying examination fee in Tanzania major cities modelled?
2 Literature Review

2.1 Technology Acceptance Models and Theories

User acceptance of new technology is a key factor for any successful implementation, and deployment of information system. Understanding individual acceptance and use of information technology is one of the largely recognized streams of information system research. As a results, researcher have developed various theoretical models for technology acceptance which are primarily developed from theories in psychology and sociology (Venkatesh et al. 2003).

The basic concept underlying user acceptance models is that; individual reactions to using information technology determines intention to use information technology (Venkatesh et al. 2003). Intention to use technology finally determines the actual use of technology. Different theories and models develop constructs that determine the individual reactions to using technology and intention to use technology.

There are several competing theories and models developed over the years. These models have been used in different technologies in varying context. Among notable models and theories are Theory of Reasoned Action (TRA), Theory of Planned Behaviour (TPB), Theory of Acceptance Model (TAM), Motivational Model (MM), Model of PC Utilization (MPCU), Innovation Diffusion Theory (IDT), Social Cognitive Theory (SCT) and Unified Theory of Acceptance and Use of Technology (UTAUT). Brief discussion of each theory is given here below.

2.1.1 Theory of Reasoned Action

The theory of reasoned action (TRA) is based on psychology and is popular in predicting human behaviour (Sheppard et al. 1988). The core constructs that make up this theory are attitude toward use, subjective norms, behavioural intention to use and the actual use of a system. The theory hypothesizes that, actual use of technology is determined by behavioural intention to use. Behavioural intention to use is itself determined by subjective norms and attitude towards use (positive or negative).

The actual usage of technology is determined by knowledge, skills and resources. These environmental effects cause the condition of the model not to be met in which cases, the person may not be able to perform the action, even if the intention to do so is strong (Sheppard et al. 1988).

2.1.2 Theory of Planned Behaviour

Theory of planned behaviour (TPB) is an extension of theory of reasoned action by adding perceived behavioural control which is hypothesized as one of the determinants of behavioural intention to use and the actual use of technology (Ajzen and Fishbein 1975). The perceived behaviour control constitute of the perceived ease or difficulty in performing behaviour.

2.1.3 Technology Acceptance Model

The technology acceptance model is based on psychology paradigm which specifies how to measure attitude and specify how stimuli are causally linked to belief, attitudes and behaviour (Ajzen and Fishbein 1975, Davis 1993). Originally, this mode was made up of four constructs namely perceived usefulness, perceived easy of use, attitude towards using and actual system use. Later system design features construct was added by Davis (1993).

Perceived usefulness construct refers to how people believe that, using a given technology will enhance their job performance while, perceived easy of use is the belief that little effort is needed to use the technology (Davis 1989). System design features and Perceived easy of use has an effect on the perceived usefulness because, users will tend to perceive that, systems that is easier to use is more useful to his/her job performance (Davis 1993). Therefore, perceive ease of use determines both perceived usefulness and attitude towards using. System design features constitute of the general system characteristics and has effect on the TAM through the motivational constructs, perceived usefulness and perceived easy of use.
2.1.4 Motivational Model
Motivational model has been used to predict behaviour. Several studies have adapted this model and used it to investigate technology acceptance in varying contexts. It is hypothesized that, behaviour is motivated both intrinsically and extrinsically. Therefore, MM has two core constructs namely intrinsic motivation and extrinsic motivation.

Extrinsic motivation is the perception that users will want to perform an activity “because it is perceived to be instrumental in achieving value outcomes that are distinct from the activity itself, such as improved job performance, pay or promotions” (Davis et al cited in Venkatesh et al. 2003). Extrinsic motivation pertains to a broad range of behaviours where the objectives of action broaden beyond those inherent in the activity itself (Vallerand and Blissonnette 1992). Intrinsic motivation on the other hand is the perception that users will want to perform activity for pleasure and satisfaction associated with performing the activity itself (Vallerand and Blissonnette 1992).

2.1.5 Model of PC Utilization
Model of PC utilization is largely derived from the Triandis as cited in Venkatesh et al (2003, p. 430) theory of human behaviour. According to Triandis cited in Thomson and Higgins (1991) argued that “behavior is determined by what people would like to do (attitudes), what they think they should do (sociat norms), what they have usually done (habits), and by the expected consequences of their behaviour”.

MPCU has therefore the following core constructs: social factors, affect, habit, intention, perceived consequences, facilitating conditions and behaviour. It is hypothesized that, social factors, affect and habit determines intention to use a technology.

2.1.6 Innovation Diffusion Theory
Mainly based on sociology, ITD is made up of seven constructs namely relative advantage, ease of use, image, visibility, compatibility, results demonstrability and voluntariness of use (Venkatesh et al. 2003).

Relative advantage is similar to perceive usefulness construct in TAM. Easy of use is also similar to perceived easy of use as used in TAM. Image carries the same meaning as subjective norms construct in the TPB/TRA. Visibility is the degree to which one is able to see others individuals using the same system (Moore and Benbasat 1991). Compatibility construct is the degree to which an innovation is perceived to be fit with existing values, requirements and experience (Moore and Benbasat 1991).

Results demonstrability refers to the tangibility of the results. Voluntariness of use construct is the degree to which the use of the innovation based on the free will (Moore and Benbasat 1991). IDT has been used for more than four decades in a range of innovations ranging from agriculture to organizational systems (Tormatzky and Klein cited in Venkatesh et al. 2003 p. 431). Moore and Benbasat (1991) adapted the model into information systems settings.

2.1.7 Social Cognitive Theory
Social cognitive theory is one of the powerful theories of human behaviour. The theory was later extended into computer usage context (Compeau et al. 1999). The core constructs for this theory are computer self efficacy, outcome expectations, affect, anxiety and usage.

2.1.8 Unified Theory of Acceptance and Usage of Technology
Unified theory of acceptance and usage of technology was formulated from the eight previous theories explaining the acceptance and use of technology by Venkatesh et al. (2003). The previous eight theories which UTAUT was based on are theory of reasoned action, the technology acceptance model, the motivational model, the theory of planned behaviour, a combination of TAM and TPB, the model of PC utilization, the innovation diffusion theory and the social cognitive theory. The original UTAUT have six core constructs and four moderating constructs. The relationships between the constructs are demonstrated in figure 1 below.
UTAUT theorises that, three constructs are the main determinants of intention to use a technology. These are the performance expectance, effort expectance and social influence. UTAUT also suggests that, facilitating condition is a determinant of use behaviour. These constructs are regulated by age, sex, experience and voluntariness of use.

Performance expectancy is defined as the level to which a user expects that using the system will help gaining job performance. Effort expectancy is the level to which user thinks that, the use of a technology is free from effort. Social influence is the measure of a level which user believes that, people important to him/her believes that he/she should use the technology. Facilitating conditions are defined as the degree to which an individual believes there is institutional setup and necessary infrastructure to support the use of a given technology.

![Unified Theory of Acceptance and Use of Technology](image)

Figure 1: Unified Theory of Acceptance and Use of Technology (Venkatesh et al. 2003)

2.2 Mobile Payments and Mobile Commerce Adoption

E-commerce, mobile banking and mobile payments systems have similar characteristics. They all involve cashless transaction between two parts. While e-commerce applications can also be accessed from mobile devices, mobile banking and mobile payments systems are more close together as they are always accessed through mobile devices. To understand issues related to mobile payments adoption, it is important to consider the similar technologies as well.

Several studies have been conducted on adoption of e-commerce and internet banking using different theoretical models. Examples include the application of TAM in mobile banking (Lule et al. 2012), integration of trust and TAM in online shopping (Gefen et al. 2003) and application of TAM in banking information system acceptance (Reid and Levy 2008). These studies demonstrated how various factors have contributed to the adoption of respective technology.

Some of the studies that specifically investigated the adoption of mobile payments adoptions are those done by Padashetty & Kishore(2013), and Shin(2010). Studies that were carried in Africa include Tobbin & Kuwornu(2011) and Vincent & Cull (2011). From these literatures, both TAM and UTAUT were used as models for investigating factors affecting the adoption of mobile payment services.
2.3 Additional Constructs

Since mobile payment systems involve money transfer between two parts, trust and perceived risk becomes important factors to consider. However, the original TAM and UTAUT did not include these two factors. These two important factors are reviewed in the subsequent sections.

2.3.1 Trust Construct

According to Bunduchi cited in Omwasa (2012 p. 56) “trust is a psychological expectation that a trusted party will not behave opportunistically”. The nature of mobile payment interactions requires trust for successful transaction completion. A fundamental requirement must be that users ought to have absolute trust in the mobile payment system in which they participate.

Results from study carried out by Lee and Song (2013) shows trust to be direct antecedents of behavioural intention to use technology in the UTAUT model. Moreover, trust confirmed as an indirect antecedent through perceived risk, performance expectancy, and effort expectancy in the model. Shin (2010) confirms that there is a positive correlation between trust and intention to use technology in a TAM modified model that include some constructs from UTAUT. Other researchers who found significance importance of trust in adoption of mobile payment include McLeod et al.(2009), Summons (2009), Gefen et al. (2003), Omwasa (2012) and Tobbin & Kuwornu (2011).

It is therefore evident that, any adoption of mobile payment must consider trust as an important determinant of behavioural intention to use. Trust is fragile, its takes time to build but can be lost immediately.

2.3.2 Perceived Risk Construct

Perceived risk is another important construct that was left out in all original previous models reviewed earlier. In this context, perceived risk can be defined as perceived uncertainty of the outcome of using mobile payment system.

Different researchers have applied perceived risk differently in various models. Im et al(2008) confirm that, there was a significant difference in perceived risk across two technologies for both pre-use and post-use. It was further found that, perceived risk to be determined by trust. In his study, perceived risk was used as a moderating construct. In another study, it was confirmed that, perceived risk reduces significantly the individual intention to use information system using UTAUT model (Lee and Song 2013). Lee and Song (2013) study found also that there is a significant negative correlation between trust and perceived risk. Individual users tend to use a technology when they perceived risk is low.

2.4 Theoretical Framework

In this section, first, evaluation of different competing theoretical models is discussed. Secondly a selection of one model that fit this study is selected. Thirdly, factors that are not included in selected models are discussed and finally a conceptual model is formulated.

Gumussoy and Calisir (2009) compared between TRA, TAM and an integrated model of TAM and TPB. While TAM is useful theoretical model for explaining user behaviour of information technology, it did not include social factors. On the other hand, TPB has social factors alone. An integrated mode was created to include both factors. The results of the comparison showed that, TAM could explain the behavioural intention to use information technology than TAM and the integrated behaviour.

A study comparing TAM and TRA confirmed that, TAM is parsimonious and easy to apply across different research settings(Davis, Bagozzi and Warshaw cited in Omwasa 2012). However, TAM does not include social influence which is an important determinant which is theorized in TRA and TPB (Omwasa 2012).

TAM and TPB were compared to find that, both explained very well intention to use technology (Mathieson cited in Omwasa 2012 p. 42). This study reveals that, the information derived by TPB was more useful during system development than information provided by TAM. However, TAM was easier to use and provided quicker and cheaper
method of collecting information, which is consistent with what Davis, Bagozzi and Warshaw cited in Omwasa (2012 p.43) findings.

Plouffe et al cited in Venkatesh (2003) compared TAM against IDT as a cross-sectional study. The results were that, variance in intention explained by TAM was 33% and IDT was 45%. In this case, IDT was found to be superior to TAM.

Venkatesh et al (2003) compared eight competing models and finally formed the UTAUT. The models involved in the settings were TPB, TAM, TRA, ITD, MM, combination of TPB and TAM (C-TAM-TPB), MPCU and SCT. When the formed UTAUT was validated against the eight models, it was found that UTAUT outperformed the eight models. UTAUT is a combination of eight competing information technology acceptance models.

A meta-analysis of empirical review findings of various technology acceptance concluded that, there is an inconsistence in an inadequate use and inconsistency in the use of a theory (Taiwo and Downe 2013). However, the various studies where conducted in different technologies and in varying environments to give inconsistent results.

Assessing the various model comparison, it is noted that, the study carried out by Venkatesh et al (2003) is the only one which compared all the competing models at the same time. The formed UTAUT was validated against the other models and found to be superior. Moreover, the formation of UTAUT was based on the similar constructs that were used in the other models with similar roles. It is evident that, UTAUT is a preferred model for technology acceptance of the rest.

2.5 Conceptual Framework

The fact that UTAUT constructs are adapted from several other competing models might be the reason for its superiority. Therefore, this study investigates factors affecting the intention to use mobile payment system in Tanzanian cities using a model based on UTAUT.

However the original UTAUT models do not include the perceived risk and trust constructs. Trust and perceived risk are two important constructs for any technology involving money transfer. This study is based on a proposed extension of UTAUT by combining the two new constructs perceived risk and trust to form a conceptual model shown in figure 2.

2.6 Hypothesis

This study proposes the adaptation of the UTAUT with some modification. Perceived risk and trust constructs are added while the actual use of the system construct is omitted. The following hypotheses are proposed for testing:

H1: Facilitating conditions has a positive effect on behavioural intention to use mobile payment system for examination fee payment

H2: Performance expectancy has a positive effect on behavioural intention to use mobile payment system for examination fee payment

H3: Effort expectancy has a positive effect on behavioural intention to use mobile payment system for examination fee payment

H4: Social influence has a positive effect on behavioural intention to use mobile payment system for examination fee payment.

H5: Trust has a positive effect on behavioural intention to use mobile payment for examination fee payment.

H6: Trust has a negative effect on perceived risk.
H7: Perceived risk has a negative effect on behavioural intention to use mobile payment system for examination fee payment.

![Conceptual Framework](image)

Figure 2: Conceptual Framework

3 Research Methodology

3.1 Data Collection Strategy

A survey method was adopted in this study, where by, a population sample was selected from Dar es Salaam city involving candidates intending to sit for form four examinations. Data collection instrument involved Likert type items. Likert scale was used for two reasons; First it is a proven scale for measuring traits and secondly, Likert type items can be combined to Likert scale for quantitative analysis (Boone and Boone 2012).

Multi-stage cluster sampling technique was selected for this study. This calls for breaking down sampling frame into clusters in which random sampling is made to each cluster (Lunenburg 2008, Greener 2008). In this case, schools were sampled randomly within Dar es Salaam city and then in each school selected, candidates were randomly selected. The reason for using this sampling technique is to reduce cost and time for data collection.

A questionnaire for data collection was constructed such that, it had several items for each latent variable. The questionnaire was adapted from previous studies from Davis (Davis 1989) Venkatesh et al. (Venkatesh et al. 2003) and Omwasa (2012) with some wording modifications to fit the context of this study.

3.2 Data Analysis Strategy

Structural equation modeling was used to validate the model of MPS adoption. SEM was selected since it is superior to other methods such as multiple regressions. SEM has a collection of statistical techniques that allows a set of
relationships between multiple dependent variables and multiple independent variables to be investigated simultaneously (Gefen et al. 2011, Omwasa 2012).

Structural equation model (SEM) was used to analyze relationship between measured and latent variables as well as estimating and testing a theoretical relationship between variables affecting the behavioral intention to use MPS.

PLS-SEM was a SEM technique selected to investigate the MPS adoption model. PLS-SEM and CBSEM are two competing SEM techniques. Selection of any one of them depends on several situations. Gefen et al. (2011) suggests that, PLS-SEM should be selected when either there is a lack of strong theory base or formative scales are used in the research model. On the other hand, CBSEM technique is selected when bias in estimations are to be avoided or when the study in question is addressing confirmatory research objectives.

The MPS adoption model investigated in this study include formative model and hence PLS-SEM was a suitable SEM technique for this study. Software package for analysis selected was SmartPLS 2.0 M3. The reasons for this choice over other packages are:

i. SmartPLS is free as compared to other SEM packages such as Amos and LISREL.
ii. Although R is an open source SEM package, the learning curve for R is steeper than that of SmartPLS
iii. SmartPLS includes PLS-SEM technique required by this study.

The following procedure was followed in evaluating the model:

i. Collinearity among exogenous variables was evaluated. Each set of predictor constructs where examined separately for each subpart of the structural model for significant collinearity. Therefore, collinearity between FC, PE, EE, SI and TR was assessed.
ii. Next, significance and relevance of the structural model relationships was assessed. Assessment of coefficients sizes must be examined together with their significance.
iii. Level of R^2 is then assessed. The larger the value of R^2 the better the model explain the variance of a give construct.
iv. Effect size f^2 was then assessed. Effect size is the measure of the impact of a predictor construct on an endogenous construct. It measures the change of R^2 value when a given endogenous construct is removed from a model.
v. Predictive relevance Q^2 was finally assessed. The Q^2 is used to measure the predictive validity of a model.

4 Findings
This research intended to study some of the key factors affecting the individual intention to use MPS in paying examination fee in major cities of Tanzania. These are facilitating conditions, performance expectancy, effort expectancy, social influence, trust and perceived risk.

To analyze the data, internal reliability of the data was first tested using SPSS 16.0. The Cronbach’s alpha for the factors is as shown in table 4 below. Cronbach’s alpha for all seven variables are greater than 0.7 (see table 2) and
therefore, the reliability of data is acceptable. However, item two for EE and three for PR were dropped to improve the reliability.

Table 2: Data Reliability

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach’s alpha</td>
<td>0.708</td>
<td>0.762</td>
<td>0.791</td>
<td>0.867</td>
<td>0.788</td>
<td>0.814</td>
<td>0.711</td>
</tr>
</tbody>
</table>

4.1 Descriptive Statistics

There were a total of 182 respondents composed of 96 males (52.7%) and 83 females (45.6%) as shown in table 3.

Table 3: Gender Distribution of Respondents

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Male</td>
<td>96</td>
<td>52.7</td>
<td>52.7</td>
<td>54.4</td>
</tr>
<tr>
<td>Female</td>
<td>83</td>
<td>45.6</td>
<td>45.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>182</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Among the respondents, 11% were below age of 19, 74.2% were aged between 19 to 29 years. There were 12.1% who were older than 29 years. The table 4 below summarizes the age distribution of the respondents.

Table 4: Age Categories

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 19</td>
<td>20</td>
<td>11.0</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>19 - 29</td>
<td>135</td>
<td>74.2</td>
<td>76.3</td>
<td>87.6</td>
</tr>
<tr>
<td>< 29</td>
<td>22</td>
<td>12.1</td>
<td>12.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
<td>97.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>182</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2 Structural Equation Modelling

Structural equation modelling was run using SmartPLS 2.0 M3 to give results shown in figure 3 and 4 below. Assessment for collinearity, significance of constructs relationships, level of R^2, effect size of f^2 and predictive relevance Q^2 was carried out one at a time.

![Figure 3: Model Estimation](image)

Step 1: Evaluating collinearity among exogenous constructs

The independent variables were assessed for collinearity. Collinearity measures correlations among independent variables. SmartPLS was used to run the model and produced latent variable scores. The scores were imported in SPSS and linear regression was performed to obtain variance inflation factors (VIF).

All VIF were found clearly below the threshold5 and therefore there is no collinearity between the variables as seen in table 5 below. Therefore, there was no collinearity among the variables.

Step 2: Assess Significance and Relevance of the Structural Model Relationships

Using SmartPLS to run the hypothesized model, path coefficients and their significance were obtained as seen in the table 6 below.

From the table 6, Trust has the largest effect on behavioral intention (0.3131) followed by social influence (0.2361). Perceived risk and perceived effectiveness has little effect of 0.1253 and 0.1425 respectively. Facilitating condition has coefficient of 0.0629 on BI. Effort expectance effect on behavioral intention is least (0.0439).
Table 1: Path Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-2.196E-5</td>
<td>.046</td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>.056</td>
<td>.078</td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td>.068</td>
<td>.068</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>.134</td>
<td>.076</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>.263</td>
<td>.072</td>
</tr>
<tr>
<td></td>
<td>TR</td>
<td>.383</td>
<td>.079</td>
</tr>
</tbody>
</table>

a. Dependent Variable: BI

Trust has a positive effect of 0.7485 on PR which is statistically significant since t statistic 15.3254 is clearly greater than 0.98. This result is contrary to expectations.

Examining the significance, the results show that, SI, PR and PE coefficients are statistically significant (T statistic > 0.98) using a one-tailed test at 95% confidence level. Path coefficients for EE and FC are not statistically significant as the t statistic value is less than 0.98 at 95% confidence level.

Table 6: Significance and Relevance of Path Coefficients

<table>
<thead>
<tr>
<th>Path</th>
<th>Path coefficients</th>
<th>Standard Deviation (STDEV)</th>
<th>Standard Error (STERR)</th>
<th>T Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE -> BI</td>
<td>0.0459</td>
<td>0.0892</td>
<td>0.0892</td>
<td>0.5146</td>
</tr>
<tr>
<td>FC -> BI</td>
<td>0.0629</td>
<td>0.0726</td>
<td>0.0726</td>
<td>0.8664</td>
</tr>
<tr>
<td>PE -> BI</td>
<td>0.1425</td>
<td>0.0827</td>
<td>0.0827</td>
<td>1.7242</td>
</tr>
<tr>
<td>PR -> BI</td>
<td>0.1253</td>
<td>0.0878</td>
<td>0.0878</td>
<td>1.4272</td>
</tr>
<tr>
<td>SI -> BI</td>
<td>0.2361</td>
<td>0.0718</td>
<td>0.0718</td>
<td>3.2858</td>
</tr>
<tr>
<td>TR -> BI</td>
<td>0.3131</td>
<td>0.0944</td>
<td>0.0944</td>
<td>3.3155</td>
</tr>
<tr>
<td>TR -> PR</td>
<td>0.7485</td>
<td>0.0488</td>
<td>0.0488</td>
<td>15.3254</td>
</tr>
</tbody>
</table>

Step 3: Assess the Level of R^2

R^2 values for both BI (0.6241) and PR (0.5799) are considered moderate as seen from results in table 7.
Table 7: Level of R^2

<table>
<thead>
<tr>
<th></th>
<th>AVE</th>
<th>Composite Reliability</th>
<th>R^2 Square</th>
<th>Cronbach’s Alpha</th>
<th>Communality</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0.7771</td>
<td>0.9123</td>
<td>0.6241</td>
<td>0.8538</td>
<td>0.7771</td>
<td>0.0455</td>
</tr>
<tr>
<td>EE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>0.6561</td>
<td>0.8501</td>
<td>0.5799</td>
<td>0.7367</td>
<td>0.6561</td>
<td>0.3779</td>
</tr>
<tr>
<td>SI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7166</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6274</td>
<td></td>
</tr>
</tbody>
</table>

Step 4: Assessing Effect Size – f^2

The calculated f^2 value is 0.00266 which is smaller than 0.02 and hence the PR has no substantive impact on the R^2 value of BI.

The formula for calculating f^2 is given as:

$$f^2 = \frac{R^2_{\text{included}} - R^2_{\text{excluded}}}{1 - R^2_{\text{included}}}$$

Step 5: Assessment of Predictive Relevance Q^2

By running blindfolding for each endogenous factor, one at a time, it was found that Q^2 for BI and PR were 0.4484 and 0.3488 respectively. Both Q^2 values indicate large predictive relevance since they are larger than zero.

5 Discussion

Data were analyzed to answer the two research questions addressed in this study. In answering those questions, the null hypotheses related to the research questions were statistically tested. In this section, the results of the analyses performed in relation to the research questions are discussed.

5.1 Research Question One

The first research question was “What are some of the key factors affecting the behavioral intention to use MPS for paying national examination fees in Tanzanian cities?” After estimating model using SmartPLS, factors that had significant impact on intention to use MPS were trust, social influence, perceived risk and perceived effectiveness.

From table 6, path coefficients for TR, SI, PR and PE coefficients are statistically significant (T statistic > 0.98) using a one-tailed test at 95% confidence level. Path coefficients for EE and FC are not statistically significant as the t statistic value is less than 0.98 at 95% confidence level.
Interestingly, it was found that, trust positively correlated to perceived risk contrary to expectations. Likewise, perceived risk positively correlated to intention to use MPS again contrary to expectations. The reasons for this could be the items used to measure risk were not clear enough to the respondents.

Effort expectancy was not significant probably the respondents had previous skills for using mobile payment system for payments of other services like electricity bills, television channels and similar services.

Hypotheses H1, H3, H5, H6 and H7 were rejected while hypothesis H2 and H4, are accepted.

5.2 Research Question Two

The second research question was “How factors affecting adoption of mobile payment for paying examination fee in Tanzanian cities modeled?” Based on the test results of hypotheses H1 through H7, the refined model for factors affecting the intention to use MPS for paying examination fee was found to be as shown in figure 10 below.

The model under study was able to explain the intention to use MPS by 62.7%. Although it is below 70% that was explained by Venkatesh et al. (2003) but higher than 59% explained by (McLeod et al. 2009). Therefore, this model has power to explain the intention to use MPS for fee payment in Tanzanian major cities.

6 Conclusion

The aim of this research was to study and understand the factors affecting the individual intention to use mobile payment system for paying examination fee in Tanzanian cities. This study makes a contribution to the body of knowledge from theoretical and practical points of view.

From theoretical point of view, the MPS model provides a foundation for understanding the relationships of constructs determining the behavioural intention to use MPS in Tanzanian cities. The constructs were first appreciated in the deep literature review in a logical manner and then validated using PLS-SEM. This study therefore, contributes to the body of knowledge on technology acceptance by validating factors as well as extending UTAUT framework in the context of mobile payment system in Cities of developing countries.

From practical point of view, the study helped to answer question about what are some of the key factors affecting the individual intention to use mobile payment system and specifically for paying examination fee. Not only that the factors are now clear, but their relative significance has been established.

It is vital for management of network operators who deploy mobile money to align their business process while realizing the contribution of the factors that influence users’ intention to use mobile payment system. Organizations that are planning to accept payments through mobile systems should also consider these factors before and after deployment for faster adoption of the system.

This research has established factors affecting the behavioural intention to use mobile payment system. It further developed the relationship among the factors using a modified UTAUT framework. Among the six factors (facilitating conditions, performance expectancy, effort expectancy, social influence, trust and perceived risk), two factors (facilitating conditions and effort expectancy) were found not significantly affecting the individual intention to use MPS. Moreover, the effects of trust and perceived risk on the intention to use MPS were contrary to expectations may be because the perceived risk items were not clear to the respondents.
This study was cross section. It is well understood that, the model of MPS adoption can well change over time. It is therefore recommended a longitudinal study to be carried out for an improved understanding of the factors affecting the individual intention to use MPS.

References

